32 research outputs found

    Stress Field Interactions Between Overlapping Shield Volcanoes : Borehole Breakout Evidence From the Island of Hawai'i, USA

    Get PDF
    Acknowledgments: This PTA2 borehole investigation was funded by the International Continental Scientific Drilling Program (ICDP) and by VMAPP (Volcanic Margin Petroleum Prospectivity) project (VBPR/DougalEARTH/TGS) in collaboration with the Humu'ula Groundwater Research Project. D. A. J. and S. P. are partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). We thank Marco Groh for the logging operations. We thank two anonymous reviewers for the comments and suggestions. We are particularly grateful to the Associate Editor Mike Poland for his valuable comments and his critical review that greatly improved the manuscript.Peer reviewedPublisher PD

    Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    No full text
    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing

    Thermomechanical characterization of leathers under tension using infrared thermography

    No full text
    International audienceLeather materials are subjected to various deformation states during their elaboration and their use as a final product. Although the mechanical response of leathers under tension has been studied in the literature for decades, scarce information is available on the nature of their elasticity and more generally on their thermomechanical behavior. In the present study, four leathers were tested under uniaxial loading conditions while temperature changes were measured at the specimen surface using infrared thermography. Two types of tests were performed at constant ambient temperature monotonous displacement-controlled tests until failure and cyclic load–unload tests with increasing amplitudes. The heat sources at the origin of the temperature changes were also determined by using a version of the heat diffusion equation applicable to homogeneous tests. Results enabled us to discuss the nature of thermoelastic couplings in leathers. Intrinsic dissipation caused by mechanical irreversibility was also detected and quantified. Distinct responses are evidenced depending on the type of leather tested

    Antimicrobial resistance in enterobacterales recovered from urinary tract infections in France

    No full text
    International audienceIn the context of increasing antimicrobial resistance in Enterobacterales, the management of these UTIs has become challenging. We retrospectively assess the prevalence of antimicrobial resistance in Enterobacterales isolates recovered from urinary tract samples in France, between 1 September 2017, to 31 August 2018. Twenty-six French clinical laboratories provided the susceptibility of 134,162 Enterobacterales isolates to 17 antimicrobials. The most frequent species were E. coliE.\ coli (72.0%), Klebsiella pneumoniaeKlebsiella\ pneumoniae (9.7%), Proteus mirabilisProteus\ mirabilis (5.8%), and Enterobacter cloacaeEnterobacter\ cloacae complex (2.9%). The overall rate of ESBL-producing Enterobacterales was 6.7%, and ranged from 1.0% in P. mirabilisP.\ mirabilis to 19.5% in K. pneumoniaeK.\ pneumoniae, and from 3.1% in outpatients to 13.6% in long-term care facilities. Overall, 4.1%, 9.3% and 10.5% of the isolates were resistant to cefoxitin, temocillin and pivmecillinam. Cotrimoxazole was the less active compound with 23.4% resistance. Conversely, 4.4%, 12.9%, and 14.3% of the strains were resistant to fosfomycin, nitrofurantoin, and ciprofloxacin. However, less than 1% of E. coli was resistant to fosfomycin and nitrofurantoin. We identified several trends in antibiotics resistances among Enterobacterales isolates recovered from the urinary tract samples in France. Carbapenem-sparing drugs, such as temocillin, mecillinam, fosfomycin, cefoxitin, and nitrofurantoin, remained highly active, including towards ESBL-E

    Tectonic and Magmatic Controls on the Location of Post-Subduction Monogenetic Volcanoes in Baja California, Mexico, Revealed through Spatial Analysis of Eruptive Vents

    No full text
    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ∌700 km long (N–S) and 70 to 150 km wide (W–E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10−1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10−2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW–SE and N–S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE–SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate cones parallel to NW–SE to N–S oriented tectonic structures. In the forearc, the existence of N–S and NE–SW oriented volcanic features indicates a rotation in the stress field orientation compared to the arc
    corecore